28 research outputs found

    Numerical study of a first-order irreversible phase transition in a CO+NO catalyzed reaction model

    Full text link
    The first-order irreversible phase transitions (IPT) of the Yaldran-Khan model (Yaldran-Khan, J. Catal. 131, 369, 1991) for the CO+NO reaction is studied using the constant coverage (CC) ensemble and performing epidemic simulations. The CC method allows the study of hysteretic effects close to coexistence as well as the location of both the upper spinodal point and the coexistence point. Epidemic studies show that at coexistence the number of active sites decreases according to a (short-time) power law followed by a (long-time) exponential decay. It is concluded that first-order IPT's share many characteristic of their reversible counterparts, such as the development of short ranged correlations, hysteretic effects, metastabilities, etc.Comment: 17 pages, 10 figure

    Adsorption of Line Segments on a Square Lattice

    Full text link
    We study the deposition of line segments on a two-dimensional square lattice. The estimates for the coverage at jamming obtained by Monte-Carlo simulations and by 7th7^{th}-order time-series expansion are successfully compared. The non-trivial limit of adsorption of infinitely long segments is studied, and the lattice coverage is consistently obtained using these two approaches.Comment: 19 pages in Latex+5 postscript files sent upon request ; PTB93_

    Theory of the NO+CO surface reaction model

    Full text link
    We derive a pair approximation (PA) for the NO+CO model with instantaneous reactions. For both the triangular and square lattices, the PA, derived here using a simpler approach, yields a phase diagram with an active state for CO-fractions y in the interval y_1 < y < y_2, with a continuous (discontinuous) phase transition to a poisoned state at y_1 (y_2). This is in qualitative agreement with simulation for the triangular lattice, where our theory gives a rather accurate prediction for y_2. To obtain the correct phase diagram for the square lattice, i.e., no active state, we reformulate the PA using sublattices. The (formerly) active regime is then replaced by a poisoned state with broken symmetry (unequal sub- lattice coverages), as observed recently by Kortluke et al. [Chem. Phys. Lett. 275, 85 (1997)]. In contrast with their approach, in which the active state persists, although reduced in extent, we report here the first qualitatively correct theory of the NO+CO model on the square lattice. Surface diffusion of nitrogen can lead to an active state in this case. In one dimension, the PA predicts that diffusion is required for the existence of an active state.Comment: 15 pages, 9 figure

    Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains

    Get PDF
    Using a highly efficient Monte Carlo algorithm, we are able to study the growth of coverage in a random sequential adsorption (RSA) of self-avoiding walk (SAW) chains for up to 10^{12} time steps on a square lattice. For the first time, the true jamming coverage (theta_J) is found to decay with the chain length (N) with a power-law theta_J propto N^{-0.1}. The growth of the coverage to its jamming limit can be described by a power-law, theta(t) approx theta_J -c/t^y with an effective exponent y which depends on the chain length, i.e., y = 0.50 for N=4 to y = 0.07 for N=30 with y -> 0 in the asymptotic limit N -> infinity.Comment: RevTeX, 5 pages inclduing figure

    Tricritical directed percolation

    Full text link
    We consider a modification of the contact process incorporating higher-order reaction terms. The original contact process exhibits a non-equilibrium phase transition belonging to the universality class of directed percolation. The incorporated higher-order reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous phase transitions is separated by a tricritical point from a line of discontinuous phase transitions. The corresponding tricritical scaling behavior is analyzed in detail, i.e., we determine the critical exponents, various universal scaling functions as well as universal amplitude combinations

    Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations

    Get PDF
    We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller–Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated

    Modular Integration Methods for Simulation of Large-Scale Dynamic Systems

    No full text
    Modular simulation of dynamic systems offers the possibility of computational speed through parallel processing of individual sub-systems and through the use of the best integration algorithms for each sub-system. Such simulation needs co-ordination algorithms to keep the various sub-systems in time synchronization and to compute the interconnection between the sub-systems. A mathematical description of the co-ordination problem leads to the development of several new algorithms. These new algorithms are shown to have desirable convergence and stability properties. In particular a new Newton type algorithm is A-stable in a sense similar to that defined for ordinary integration algorithms
    corecore